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The structure (both in terms of through bond connectivity (covalent bonds) and through space
interactions (non-covalent interactions, both favorable and repulsive)) of a molecule determine
its dynamic properties and reactivity (chemical and physical): ie its function. 5 gateway concepts
of bonding and interactions lay the foundation for understanding protein structure function
relationships and the structure, activity and regulation of enzymes.

1: Core Concepts of Covalent Bonds and Polarity

Covalent bonds are formed by the sharing of electron pairs

(one or more) between the bonded atoms to give strong

bonds with energies ranging from around 80kcal/mole (single

shared electron pair: single bond) to 150kcal/mole (2 shared

pairs: double bond) to 200kcal/mol (3 shared pairs: triple

Nonpolar covalent bond bond), compared to the thermal energy at room temperature
of about 0.6kcal/mole.




palar covalent bond

h "
ydroged 2 - Jhvdrogen

+

polar covalent bond

The sharing of the bonding electrons may be unequal
depending upon the electronegativity of the bonding
atoms [Periodic Table and Trends] which can lead to
polar covalent bonds where partial charges can reside on
the appropriate atoms [Dipoles etc].

Because the electron density of the shared pair in a single bond (sigma bond) is in line
between the two bonded nuclei, free rotation about the bond is possible. However the above
and below the plane electron density in a double (or triple) bond resulting from the pi bond

porhitals overlap
/ \,

= bond formed component restricts rotation
since rotation would result in
w . hegative Coulombic interactions
" between the component electron
densities.[Sigma and Pi bond

| s %+ electron density]

In a multi-atom bonding system

:tj:D containing one or more double bond as

well as single bonds, resonance forms
may give rise to “partial” double bond
character of some formal single

\ I bonds.[Peptide Bond resonance forms

H etc]

For small molecules (1 or a limited number of “central”
atoms), 3 Dimensional structures are determined by
bond angles and lengths and geometric considerations
involving both bonding and non-bonding (lone pair)
electrons based upon Coulombic repulsion of electron
density[Lewis Dot Diagrams and VSEPRY].
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2: Bond rotations and vibrations

. The chemical bond between 2 atoms
vibrates as a harmonic oscillator to allow
L v vy NN bond stretching. [diagram] Such
symmetric stretch asymmedtric stretch bend stretching may be symmetric or

asymmetric in a molecule with a central
atom. In such molecules bending motions

may also occur [Energy of a Molecule].
Ilbratlons y [ gy 1

The time scale of such bond vibrations is on the order of 10-13-10-14 seconds. As a result of the
high energy cost of deforming bond lengths and angles such vibrations are usually of small
amplitude.
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Rotations about single covalent bonds
can occur with energy barriers to
rotation on the order of 10-12kJ/mole
in simple molecules without steric
hindrance, and time scales on the order
to 5 x 107 seconds.

3: Hydrogen bonds and other noncovalent interactions

Coulomb’s Law

A variety of non-

Non-covalent interactions
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!
Force —

F < O attractive
F = 0 repulsive

covalent interactions
Charges are based upon
(in Coulombs) .
\ . Coulombic
_ ka,q, interactions between
r? opposite (attraction)
~ Distance or like (repulsion)
between charges involving
charges . ..
either full (ionic) or

partial (Van der Waals or Hydrogen Bond) charges rather than sharing of electrons as in covalent

bonds.

Such interactions can involve Charge-Dipole, Dipole-Dipole or Induced Dipole interactions
and the magnitude of the interaction energy, as a result of Coulomb’s Law, shows a dependence

on both distance and the local dielectric environment.



Figure 2.2 Noncovalent interactions
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Hydrogen bonds can be classified as Strong (2.2-2.5A, AG = 40-14kcal/mole), Moderate (2.5-
3.2A, AG = 15-4kcal/mole) and weak (3.2-4.0A, AG < 4kcal/mole), with the strength of the
bond progressively decreases as the angle between the involved atoms deviates from 180°.
Hydrogen Bonds may be bifurcated. There appears to be a potential “covalent” contribution
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The force between two atoms in Non-Covalent interactions can be described by the Lennard-
Jones Potential involving the equilibrium distance of the two atoms (the van der Waals radius),
the attractive interactions and the repulsive forces resulting from overlapping atomic orbitals.

4: The Hydrophobic effect

Non-polar molecules, as a result of their local dielectric constant structure a cage of polar
solvent molecules around them, resulting in a decrease in the entropy of the system.
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The magnitude of the hydrophobic effect is proportional to the number of C-H bonds in the
molecule excluded from the polar solvent by the interaction.



The AG for the interaction of two non-polar molecules comes predominantly from the
entropy increase in the polar solvent molecules of the system: AG = AH - TAS, with AS
being large and positive overall with the resultant AG being negative.
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5: Dynamic aspects of molecular structure

. As a result of the properties of bonds and
The potential energy of a . : Proper :
interactions a molecule is not a static

molecule can be written structure.

E=Y Ewus+ Y B+ 3" Euion + 3" Enonboni .Bond rotations and vibrations'combin.ed with
b o dihedrals e inter-molecular non-covalent interactions
(attractive and repulsive) allow a potential
energy surface to be calculated
(approximated for large molecules)The
potential energy of a molecule (which is the sum off all of the possible bonded and non-
bonded interactions) determines the “structure” of a molecule which can be described in
terms of Potential Energy minima, the local equilibrium structures, and saddle points which
represent transition states from one local equilibrium structure to another.

Molecular motion can be described in terms of small amplitude motions (within an energy
well on the surface) or large amplitude (between energy wells on the surface)
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An ensemble of
chemically identical
molecules will be
distributed between
accessible (depends
upon the temperature
of the system)
potential energy
minima on the
surface proportional
to the depths of the
minima and can
freely interchange
between these local
energy minima



